Add like
Add dislike
Add to saved papers

The influence of the carotid baroreflex on dynamic regulation of cerebral blood flow and cerebral tissue oxygenation in humans at rest and during exercise.

PURPOSE: This preliminary study tested the hypothesis that the carotid baroreflex (CBR) mediated sympathoexcitation regulates cerebral blood flow (CBF) at rest and during dynamic exercise.

METHODS: In seven healthy subjects (26 ± 1 years), oscillatory neck pressure (NP) stimuli of + 40 mmHg were applied to the carotid baroreceptors at a pre-determined frequency of 0.1 Hz at rest, low (10 ± 1W), and heavy (30 ± 3W) exercise workloads (WLs) without (control) and with α - 1 adrenoreceptor blockade (prazosin). Spectral power analysis of the mean arterial blood pressure (MAP), mean middle cerebral artery blood velocity (MCAV), and cerebral tissue oxygenation index (ScO2 ) in the low-frequency range (0.07-0.20 Hz) was estimated to examine NP stimuli responses.

RESULTS: From rest to heavy exercise, WLs resulted in a greater than three-fold increase in MCAV power (42 ± 23.8-145.2 ± 78, p < 0.01) and an almost three-fold increase in ScO2 power (0.51 ± 0.3-1.53 ± 0.8, p = 0.01), even though there were no changes in MAP power (from 24.5 ± 21 to 22.9 ± 11.9) with NP stimuli. With prazosin, the overall MAP (p = 0.0017), MCAV (p = 0.019), and ScO2 (p = 0.049) power was blunted regardless of the exercise conditions. Prazosin blockade resulted in increases in the Tf gain index between MAP and MCAV compared to the control (p = 0.03).

CONCLUSION: CBR-mediated changes in sympathetic activity contribute to dynamic regulation of the cerebral vasculature and CBF at rest and during dynamic exercise in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app