Add like
Add dislike
Add to saved papers

Filtrations on Springer fiber cohomology and Kostka polynomials.

We prove a conjecture which expresses the bigraded Poisson-de Rham homology of the nilpotent cone of a semisimple Lie algebra in terms of the generalized (one-variable) Kostka polynomials, via a formula suggested by Lusztig. This allows us to construct a canonical family of filtrations on the flag variety cohomology, and hence on irreducible representations of the Weyl group, whose Hilbert series are given by the generalized Kostka polynomials. We deduce consequences for the cohomology of all Springer fibers. In particular, this computes the grading on the zeroth Poisson homology of all classical finite W-algebras, as well as the filtration on the zeroth Hochschild homology of all quantum finite W-algebras, and we generalize to all homology degrees. As a consequence, we deduce a conjecture of Proudfoot on symplectic duality, relating in type A the Poisson homology of Slodowy slices to the intersection cohomology of nilpotent orbit closures. In the last section, we give an analogue of our main theorem in the setting of mirabolic D-modules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app