Add like
Add dislike
Add to saved papers

Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.

Scientific Reports 2018 March 2
New phase diagrams for water confined in graphene nanocapillaries and single-walled carbon nanotubes (CNTs) are proposed, identifying ice structures, their melting points and revealing the presence of a solid-liquid critical point. For quasi-2D water in nanocapillaries, we show through molecular-dynamics simulations that AA stacking in multilayer quasi-2D ice arises from interlayer hydrogen-bonding and is stable up to three layers, thereby explaining recent experimental observations. Detailed structural and energetic analyses show that quasi-2D water can freeze discontinuously through a first-order phase transition or continuously with a critical point. The first-order transition line extends to a continuous transition line, defined by a sharp transition in diffusivity between solid-like and liquid-like regimes. For quasi-1D water, confined in CNTs, we observe the existence of a similar critical point at intermediate densities. In addition, an end point is identified on the continuous-transition line, above which the solid and liquid phases deform continuously. The solid-liquid phase transition temperatures in CNTs are shown to be substantially higher than 273 K, confirming recent Raman spectroscopy measurements. We observe ultrafast proton and hydroxyl transport in quasi-1D and -2D ice at 300 K, exceeding those of bulk water up to a factor of five, thereby providing possible applications to fuel-cells and electrolyzers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app