Add like
Add dislike
Add to saved papers

Degradation shaped bacterial and archaeal communities with predictable taxa and their association patterns in Zoige wetland at Tibet plateau.

Scientific Reports 2018 March 2
Soil microbes provide important ecosystem services. Zoige Plateau wetland, the largest alpine peat wetland in the world, has suffered from serious degradation in the past 30 years. We studied the composition of the Zoige Plateau alpine wetland soil microbiota and relations among specific taxa using 16S rRNA amplicon sequencing combined with association network analysis. Compared to the pristine swamp soil, taxons DA101, Aeromicrobium, Bradyrhizobium, and Candidatus Nitrososphaera were enriched and several methanogenic Euryarchaeota were depleted in the moderately degraded meadow soil and highly degraded sandy soil. Soil total potassium contents in soils with different degradation levels were significantly different, being the highest in meadow soil and lowest in swamp soil. The association network analysis showed that total potassium positively correlated with specific bacterial and archaeal taxa. Jiangella, Anaerolinea, Desulfobulbus, Geobacter, Flavobacterium, Methanobacterium and Methanosaeta were identified as the keystone genera in the networks. Soil degradation affected soil properties, and caused changes in the bacterial and archaeal community composition and the association patterns of community members. The changes could serve as early warning signals of soil degradation in alpine wetlands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app