Add like
Add dislike
Add to saved papers

Inhibition of Local Macrophage Growth Ameliorates Focal Inflammation and Suppresses Atherosclerosis.

OBJECTIVE: Macrophages play a central role in various stages of atherosclerotic plaque formation and progression. The local macrophages reportedly proliferate during atherosclerosis, but the pathophysiological significance of macrophage proliferation in this context remains unclear. Here, we investigated the involvement of local macrophage proliferation during atherosclerosis formation and progression using transgenic mice, in which macrophage proliferation was specifically suppressed.

APPROACH AND RESULTS: Inhibition of macrophage proliferation was achieved by inducing the expression of cyclin-dependent kinase inhibitor 1B, also known as p27kip , under the regulation of a scavenger receptor promoter/enhancer. The macrophage-specific human p27kip Tg mice were subsequently crossed with apolipoprotein E-deficient mice for the atherosclerotic plaque study. Results showed that a reduced number of local macrophages resulted in marked suppression of atherosclerotic plaque formation and inflammatory response in the plaque. Moreover, fewer local macrophages in macrophage-specific human p27kip Tg mice helped stabilize the plaque, as evidenced by a reduced necrotic core area, increased collagenous extracellular matrix, and thickened fibrous cap.

CONCLUSIONS: These results provide direct evidence of the involvement of local macrophage proliferation in formation and progression of atherosclerotic plaques and plaque stability. Thus, control of macrophage proliferation might represent a therapeutic target for treating atherosclerotic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app