Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity.

Protein aggregation and amyloid fibrillation are responsible for several serious pathological conditions (like type II diabetes, Alzheimer's and Parkinson's diseases etc.) and protein drugs ineffectiveness. Therefore, a molecule that can inhibit the amyloid fibrillation and potentially clear amyloid fibrils is of great therapeutic value. In this manuscript, we investigated the antiamyloidogenic, fibril disaggregating, as well as cell protective effect of an anti-tuberculosis drug, Capreomycin (CN). Aggregation kinetics data, as monitored by ThT fluorescence, inferred that CN retards the insulin amyloid fibrillation by primarily targeting the fibril elongation step with little effect on lag time. Increasing the dose of CN boosted its inhibitory potency. Strikingly, CN arrested the growth of fibrils when added during the elongation phase, and disaggregated mature insulin fibrils. Our Circular Dichroism (CD) results showed that, although CN is not able to maintain the alpha helical structure of protein during fibrillation, reduces the formation of beta sheet rich structure. Furthermore, Dynamic Light Scattering (DLS) and Transmission Electronic Microscopy (TEM) analysis confirmed that CN treated samples exhibited different size distribution and morphology, respectively. In addition, molecular docking results revealed that CN interacts with insulin through hydrophobic interactions as well as hydrogen bonding, and the Hemolytic assay confirmed the non-hemolytic activity of CN on human RBCs. For future research, this study may assist in the rational designing of molecules against amyloid formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app