Add like
Add dislike
Add to saved papers

Vibrational energy transfer and dissociation in O 2 -N 2 collisions at hyperthermal temperatures.

Journal of Chemical Physics 2018 Februrary 29
Simulation of vibrational energy transfer and dissociation in O2 -N2 collisions is conducted using the quasi-classical trajectory method on an ab initio potential energy surface. Vibrationally resolved rate coefficients are obtained in a high-temperature region between 8000 and 20 000 K by means of the cost-efficient classical trajectory propagation method. A system of master equations is constructed using the new dataset in order to simulate thermal and chemical nonequilibrium observed in shock flows. The O2 relaxation time derived from a solution of the master equations is in good agreement with the Millikan and White correlation at lower temperatures with an increasing discrepancy toward the translational temperature of 20 000 K. At the same time, the N2 master equation relaxation time is similar to that derived under the assumption of a two-state system. The effect of vibrational-vibrational energy transfer appears to be crucial for N2 relaxation and dissociation. Thermal equilibrium and quasi-steady state dissociation rate coefficients in O2 -N2 heat bath are reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app