Add like
Add dislike
Add to saved papers

Towards acoustic particle velocity sensors in air using entrained balloons: Measurements and modeling.

In this article, the feasibility of using balloons for the measurement of acoustic particle velocity in air is investigated by exploring the behavior of an elastic balloon in air as it vibrates in response to an incident acoustic wave. This is motivated by the frequent use of neutrally buoyant spheres as underwater inertial particle velocity sensors. The results of experiments performed in an anechoic chamber are presented, in which a pair of laser Doppler vibrometers simultaneously captured the velocities of the front and back surfaces of a Mylar balloon in an acoustic field. From phase measurements, the motion is described in terms of contributions from odd-order vibration modes (including bulk translation) and even-order vibration modes. The measured entrainment factors for the balloon are seen to be in good agreement with a physical model based on the scattering from an entrained rigid sphere. This demonstrates the feasibility of using entrained balloons for direct measurement of acoustic particle velocity in air.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app