Add like
Add dislike
Add to saved papers

Radical Chemistry in a Femtosecond Laser Plasma: Photochemical Reduction of Ag⁺ in Liquid Ammonia Solution.

Plasmas with dense concentrations of reactive species such as hydrated electrons and hydroxyl radicals are generated from focusing intense femtosecond laser pulses into aqueous media. These radical species can reduce metal ions such as Au3+ to form metal nanoparticles (NPs). However, the formation of H₂O₂ by the recombination of hydroxyl radicals inhibits the reduction of Ag⁺ through back-oxidation. This work has explored the control of hydroxyl radical chemistry in a femtosecond laser-generated plasma through the addition of liquid ammonia. The irradiation of liquid ammonia solutions resulted in a reaction between NH₃ and OH·, forming peroxynitrite and ONOO- , and significantly reducing the amount of H₂O₂ generated. Varying the liquid ammonia concentration controlled the Ag⁺ reduction rate, forming 12.7 ± 4.9 nm silver nanoparticles at the optimal ammonia concentration. The photochemical mechanisms underlying peroxynitrite formation and Ag⁺ reduction are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app