Add like
Add dislike
Add to saved papers

Mesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF.

Mesenchymal stem cells (MSC) provide therapeutic effects in experimental CNS disease models and show promise as cell-based therapies for humans, but their modes of action are not well understood. We previously show that MSC protect rodent neurons against glutamate excitotoxicity in vitro, and in vivo in an epilepsy model. Neuroprotection is associated with reduced NMDA glutamate receptor (NMDAR) subunit expression and neuronal glutamate-induced calcium (Ca2+ ) responses, and increased expression of stem cell-associated genes. Here, to investigate whether MSC-secreted factors modulate neuronal AMPA glutamate receptors (AMPAR) and gene expression, we performed longitudinal studies of enriched mouse cortical neurons treated with MSC conditioned medium (CM). MSC CM did not alter total levels of GluR1 AMPAR subunit in neurons, but its distribution, reducing cell surface levels compared to non-treated neurons. Proportions of NeuN-positive neurons, and of GFAP- and NG2-positive glia, were equal in untreated and MSC CM-treated cultures over time suggesting that neurons, rather than differentially-expanded glia, account for the immature gene profile previously reported in MSC CM-treated cultures. Lastly, MSC CM contained measurable amounts of tumor necrosis factor (TNF) bioactivity and pre-treatment of MSC CM with the TNF inhibitor etanercept reduced its ability to protect neurons. Together these results indicate that MSC-mediated neuroprotection against glutamate excitotoxicity involves reduced NMDAR and GluR1-containing AMPAR function, and TNF-mediated neuroprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app