Journal Article
Review
Add like
Add dislike
Add to saved papers

Constructed wetlands for greywater recycle and reuse: A review.

Concern over dwindling water supplies for urban areas as well as environmental degradation from existing urban water systems has motivated research into more resilient and sustainable water supply strategies. Greywater reuse has been suggested as a way to diversify local water supply portfolios while at the same time lessening the burden on existing environments and infrastructure. Constructed wetlands have been proposed as an economically and energetically efficient unit process to treat greywater for reuse purposes, though their ability to consistently meet applicable water quality standards, microbiological in particular, is questionable. We therefore review the existing case study literature to summarize the treatment performance of greywater wetlands in the context of chemical, physical and microbiological water quality standards. Based on a cross-section of different types of wetlands, including surface flow, subsurface flow, vertical and recirculating vertical flow, across a range of operating conditions, we show that although microbiological standards cannot reliably be met, given either sufficient retention time or active recirculation, chemical and physical standards can. We then review existing case study literature for typical water supply disinfection unit processes including chlorination, ozonation and ultraviolet radiation treating either raw or treated greywater specifically. An evaluation of effluent water quality from published wetland case studies and the expected performance from disinfection processes shows that under appropriate conditions these two unit processes together can likely produce effluent of sufficient quality to meet all nonpotable reuse standards. Specifically, we suggest that recycling vertical flow wetlands combined with ultraviolet radiation disinfection and chlorine residual is the best combination to reliably meet the standards.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app