Add like
Add dislike
Add to saved papers

Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA.

Magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid (MNP@PNA) was synthesized for use as both a magnetic nano-support and a probe for specific adsorption with complementary deoxyribonucleic acid (DNA). MNP@PNA with the size ranging between 120 and 170 nm in diameter was prepared via a free radical polymerization of acrylic acid in the presence of acrylamide-grafted MNP to obtain negatively charged magnetic nanoclusters, followed by ionic adsorption with PNA. According to fluorescence spectrophotometry and gel electrophoresis, this MNP@PNA can differentiate between fully matched, single-base mismatched and fully mismatched synthetic DNAs tagged with different fluorophores. UV-vis spectrophotometry and gel electrophoresis indicated that MNP@PNA can be used for specific adsorption with real DNA (zein gene of maize) having complementary sequence with the PNA probe. This novel anionic MNP conjugated with the PNA probe might be potentially applicable for use as a magnetic support for DNA base discrimination and might be a promising tool for testing genetic modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app