Add like
Add dislike
Add to saved papers

Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation.

There has been an urgent need to quickly screen and isolate patients with viral infections from patients with similar symptoms at point-of-care. In this study, we introduce a new microfluidic method for detection of various viruses using rolling circle amplification (RCA) of pathogens on the surface of thousands of microbeads packed in microchannels. When a targeted pathogen meets the corresponding particular template, the DNAs are rapidly amplified into a specific dumbbell shape through the RCA process, forming a DNA hydrogel and blocking the flow path formed between the beads. Due to the significant increase in reaction surface area, the detection time was shortened to less than 15 min and the detection limit of various pathogens has been reached to 0.1 pM. By injecting the stained liquid, the existence of the target pathogens in a sample fluid can be determined with the naked eye. Furthermore, by integrating multi-channel design, simultaneous phenotyping of various infective pathogens (i.e., Ebola, Middle East respiratory syndrome (MERS), and others) in biological specimens can be performed at a point-of-care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app