Add like
Add dislike
Add to saved papers

Precious GEMMs: emergence of faithful models for ovarian cancer research.

The development of Genetically Engineered Mouse Models (GEMMs) has catalyzed tremendous progress in cancer research. However, it has been difficult to design adequate mouse models for high-grade serous carcinoma (HGSC), the most common and lethal form of ovarian cancer. The genetic complexity of the disease, as well as the recent appreciation that most HGSCs arise from the fallopian tube (FT) secretory epithelium rather than the ovarian surface epithelium, has stifled the development of robust GEMMs. In a recent issue of this journal, Zhai et al presented an elegant mouse model for ovarian cancer that uses Ovgp1 as an FT-specific promoter to inactivate Brca1, Trp53, Rb1, Nf1, and Pten. The authors showed that loss of these genes in the mouse FT epithelium can mimic the different stages of human HGSC tumorigenesis. Their robust model emphasizes the importance of considering both the cell of origin and tumor genetics in developing accurate model systems. They provide a useful tool for studying mechanisms of disease in vivo and for research into novel methods of prevention, early detection, and treatment of HGSC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app