Add like
Add dislike
Add to saved papers

Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope.

Nanoscale 2018 March 16
The fabrication of solid-state nanopores in an insulating membrane has attracted much attention for biomolecule analysis such as DNA sequencing and detection in recent years. For practical applications and device integration, the challenges include precise size control for sub 10 nm nanopores, excellent repeatability and rapid fabrication over a large area to reduce the cost for mass production. A helium ion beam could provide an effective fabrication approach to produce such solid-state nanopores. It is easy to control the nanopore size and reach sub 10 nm pore size with a simple change in the milling time with an appropriate ion beam current. Here we report new results in a set of experiments demonstrating that with a small range of stage automatized motions and equal mill times one can obtain good fabrication reproducibility in nanopore sizes (<10% variation in size). The automation in the stage motion and milling time opens a door for the rapid mass production of nanopore chips over a wafer size of several inches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app