Add like
Add dislike
Add to saved papers

Conformational analysis of macrocyclic frankincense (Boswellia) diterpenoids.

Frankincense oleoresin has been used in traditional medicine for more than 5000 years. The phytochemistry of frankincense (Boswellia spp.) resins includes triterpenoids (including boswellic acids and their derivatives), diterpenoids (cembrenoids and cneorubenoids), and essential oils. The macrocyclic cembrene diterpenoids may play a part in the biological activities of frankincense resin, but neither the biological targets nor the modes of interaction with the targets are currently known. How these macrocycles interact with biological macromolecules likely depends on what conformation(s) are energetically available to them. In this work, a conformational analysis of 15 Boswellia cembrene diterpenoids and 1 verticillane diterpenoid was carried out at the B3LYP/6-31G* and M06-2X/6-31G* levels of theory, including the SM8 aqueous solvation model. The lowest-energy conformations of boscartin B and incensole oxide were the same as the previously reported X-ray crystal structures, while the lowest-energy conformations of boscartins A and C were very similar to the crystal structures. Boscartins D-H and isoincensole oxide showed only one low-energy conformation for each compound and are predicted to be conformationally locked. Incensole, isoincensolol, and serratol are predicted to be conformationally mobile with several low-energy forms. The conformational mobility of Boswellia cembrenoid diterpenoids depends largely on the degree of epoxidation, either oxirane or tetrahydrofuran rings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app