Add like
Add dislike
Add to saved papers

A molecular quantum switch based on tunneling in meta-d-phenol C 6 H 4 DOH.

We introduce the concept of a molecular quantum switch and demonstrate it with the example of meta-d-phenol, based on recent theoretical and high-resolution spectroscopic results for this molecule. We show that in the regime of tunneling switching with localized low-energy states and delocalized high-energy states the molecular quantum switch can be operated in two different ways: (i) a quasiclassical switching by coherent infrared radiation between the two isomeric structures syn- and anti-m-d-phenol; and (ii) a highly nonclassical switching making use of bistructural quantum superposition states of the syn and anti structures, which can be observed by their time-dependent spectra after preparation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app