Add like
Add dislike
Add to saved papers

Learning models of Human-Robot Interaction from small data.

This paper offers a new approach to learning discrete models for human-robot interaction (HRI) from small data. In the motivating application, HRI is an integral part of a pediatric rehabilitation paradigm that involves a play-based, social environment aiming at improving mobility for infants with mobility impairments. Designing interfaces in this setting is challenging, because in order to harness, and eventually automate, the social interaction between children and robots, a behavioral model capturing the causality between robot actions and child reactions is needed. The paper adopts a Markov decision process (MDP) as such a model, and selects the transition probabilities through an empirical approximation procedure called smoothing. Smoothing has been successfully applied in natural language processing (NLP) and identification where, similarly to the current paradigm, learning from small data sets is crucial. The goal of this paper is two-fold: (i) to describe our application of HRI, and (ii) to provide evidence that supports the application of smoothing for small data sets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app