Add like
Add dislike
Add to saved papers

Asymmetrical positive assortative mating induced by developmental lead (Pb 2+ ) exposure in a model system, Drosophila melanogaster .

Current Zoology 2017 April
Anthropogenic pollutants have the potential to disrupt reproductive strategies. Little is known about how lead (Pb2+ ) exposure disrupts individual-level responses in reproductive behaviors, which are important for fitness. Drosophila melanogaster was used as a model system to determine the effects of: 1) developmental lead exposure on pre-mating reproductive behaviors (i.e., mate preference), and 2) lead exposure and mating preferences on fitness in the F 0 parental generation and F 1 un-exposed offspring. Wild-type strains of D. melanogaster were reared from egg stage to adulthood in control or leaded medium (250 μM PbAc) and tested for differences in: mate preference, male song performance, sex pheromone expression, fecundity, mortality, and body weight. F 0 leaded females preferentially mated with leaded males (i.e., asymmetrical positive assortative mating) in 2-choice tests. This positive assortative mating was mediated by the females (and not the males) and was dependent upon context and developmental exposure to Pb. Neither the courtship song nor the sex pheromone profile expressed by control and leaded males mediated the positive assortative mating in leaded females. Leaded females did not incur a fitness cost in terms of reduced fecundity, increased mortality, or decreased body weight by mating with leaded males. These results suggest that sublethal exposure to lead during development can alter mate preferences in adults, but not fitness measures once lead exposure has been removed. We suggest that changes in mate preference may induce fitness costs, as well as long-term population and multi-generational implications, if pollution is persistent in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app