Add like
Add dislike
Add to saved papers

Electrically controlled transformation of memristive titanates into mesoporous titanium oxides via incongruent sublimation.

Scientific Reports 2018 Februrary 29
Perovskites such as SrTiO3 , BaTiO3 , and CaTiO3 have become key materials for future energy-efficient memristive data storage and logic applications due to their ability to switch their resistance reversibly upon application of an external voltage. This resistance switching effect is based on the evolution of nanoscale conducting filaments with different stoichiometry and structure than the original oxide. In order to design and optimize memristive devices, a fundamental understanding of the interaction between electrochemical stress, stoichiometry changes and phase transformations is needed. Here, we follow the approach of investigating these effects in a macroscopic model system. We show that by applying a DC voltage under reducing conditions on a perovskite slab it is possible to induce stoichiometry polarization allowing for a controlled decomposition related to incongruent sublimation of the alkaline earth metal starting in the surface region. This way, self-formed mesoporous layers can be generated which are fully depleted by Sr (or Ba, Ca) but consist of titanium oxides including TiO and Ti3 O with tens of micrometre thickness. This illustrates that phase transformations can be induced easily by electrochemical driving forces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app