CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection.

Infection with the emerging pathogen Clostridioides (Clostridium) difficile might lead to colonization of the gastrointestinal tract of humans and mammals eventually resulting in antibiotic-associated diarrhea, which can be mild to possibly life-threatening. Recurrences after antibiotic treatment have been described in 15-30% of the cases and are either caused by the original (relapse) or by new strains (reinfection). In this study, we describe a patient with ongoing recurrent C. difficile infections over 13 months. During this time, ten C. difficile strains of six different ribotypes could be isolated that were further characterized by phenotypic and genomic analyses including motility and sporulation assays, growth fitness and antibiotic susceptibility as well as whole-genome sequencing. PCR ribotyping of the isolates confirmed that the recurrences were a mixture of relapses and reinfections. One recurrence was due to a mixed infection with three different strains of two different ribotypes. Furthermore, genomes were sequenced and multi-locus sequence typing (MLST) was carried out, which identified the strains as members of sequence types (STs) 10, 11, 14 and 76. Comparison of the genomes of isolates of the same ST originating from recurrent CDI (relapses) indicated little within-patient microevolution and some concurrent within-patient diversity of closely related strains. Isolates of ribotype 126 that are binary toxin positive differed from other ribotypes in various phenotypic aspects including motility, sporulation behavior and cell morphology. Ribotype 126 is genetically related to ribotype 078 that has been associated with increased virulence. Isolates of the ribotype 126 exhibited elongated cells and a chaining phenotype, which was confirmed by membrane staining and scanning electron microscopy. Furthermore, this strain exhibits a sinking behavior in liquid medium in stationary growth phase. Taken together, our observation has proven multiple CDI recurrences that were based on a mixture of relapses and reinfections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app