Add like
Add dislike
Add to saved papers

Molecular Mechanism of Alternative P450-Catalyzed Metabolism of Environmental Phenolic Endocrine-Disrupting Chemicals.

Understanding the bioactivation mechanisms to predict toxic metabolites is critical for risk assessment of phenolic endocrine-disrupting chemicals (EDCs). One mechanism involves ipso-substitution, which may contribute to the total turnover of phenolic EDCs, yet the detailed mechanism and its relationship with other mechanisms are unknown. We used density functional theory to investigate the P450-catalyzed ipso-substitution mechanism of the prominent xenoestrogen bisphenol A. The ipso-substitution proceeds via H-abstraction from bisphenol A by Compound I, followed by essentially barrierless OH-rebound onto the ipso-position forming a quinol, which can spontaneously decompose into the carbocation and hydroquinone. This carbocation can further evolve into the highly estrogenic hydroxylated and dimer-type metabolites. The H-abstraction/OH-rebound reaction mechanism has been verified as a general reaction mode for many other phenolic EDCs, such as bisphenol analogues, alkylphenols and chlorophenols. The identified mechanism enables us to effectively distinguish between type I (eliminating-substituent as anion) and type II (eliminating-substituent as cation) ipso-substitution in various phenolic EDCs. We envision that the identified pathways will be applicable for prediction of metabolites from phenolic EDCs whose fate are affected by this alternative type of P450 reactivity, and accordingly enable the screening of these metabolites for endocrine-disrupting activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app