Add like
Add dislike
Add to saved papers

Orbital Interstitial Fluid: Evidence of a Potential Pathway for Extracranial Cerebrospinal Fluid Absorption.

BACKGROUND AND PURPOSE: The aim of the study was to describe the prevalence and characteristics of orbital interstitial fluid seen on magnetic resonance (MR) images of infants and young children.

MATERIALS AND METHODS: Fat-suppressed axial T2-weighted MR images of 100 consecutive infants and young children (<6 years) without orbital pathology were retrospectively reviewed by 2 neuroradiologists. The presence, location, and extent of high-signal orbital interstitial fluid were characterized and tabulated as a function of age.

RESULTS: Orbital interstitial fluid was detected in 90 (90%) of the 100 subjects overall, present in 100% (75/75) of infants and children younger than 3 years, 75% (12/16) of those aged 3 to 5 years, and 33% (3/9) of those aged 5 to 6 years. The fluid was bilateral and symmetric in all cases. Two morphologic patterns were distinguished, which often co-existed: (1) a focal discrete curvilinear band of fluid in the posterior-lateral orbit, more common in younger patients, and (2) an ill-defined, lace-like pattern primarily in the superior orbit seen in subjects of all ages.

CONCLUSIONS: Orbital interstitial fluid as detected by fat-suppressed T2-weighted MR imaging is a nearly universal finding in infants and young children and should not be considered pathologic. It may have either a focal or lace-like pattern or both. Orbital interstitial fluid decreases in size and prevalence as a function of age but is still present in nearly half of children aged 4 to 6 years. Possible explanations concerning the nature and origin of this fluid are presented, including the fascinating possibility that the fluid represents an extracranial pathway for outflow of cerebrospinal fluid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app