Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crossover of the Power-Law Exponent for Carbon Nanotube Conductivity as a Function of Salinity.

On the basis of the Poisson-Boltzmann equation in cylindrical coordinates, we calculate the conductivity of a single charged nanotube filled with electrolyte. The conductivity as a function of the salt concentration follows a power-law, the exponent of which has been controversially discussed in the literature. We use the co-ion-exclusion approximation and obtain the crossover between different asymptotic power-law behaviors analytically. Numerically solving the full Poisson-Boltzmann equation, we also calculate the complete diagram of exponents as a function of the salt concentration and the pH for tubes with different radii and p Ka values. We apply our theory to recent experimental results on carbon nanotubes using the p Ka as a fit parameter. In good agreement with the experimental data, the theory shows power-law behavior with the exponents 1/3 at high pH and 1/2 at low pH, with a crossover depending on salt concentration, tube radius and p Ka .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app