Add like
Add dislike
Add to saved papers

MÖNCH detector enables fast and low-dose free-propagation phase-contrast computed tomography of in situ mouse lungs.

Due to the complexity of the underlying pathomechanism, in vivo mouse lung-disease models continue to be of great importance in preclinical respiratory research. Longitudinal studies following the cause of a disease or evaluating treatment efficacy are of particular interest but challenging due to the small size of the mouse lung and the fast breathing rate. Synchrotron-based in-line phase-contrast computed tomography imaging has been successfully applied in lung research in various applications, but mostly at dose levels that forbid longitudinal in vivo studies. Here, the novel charge-integrating hybrid detector MÖNCH is presented, which enables imaging of mouse lungs at a pixel size of 25 µm, in less than 10 s and with an entrance dose of about 70 mGy, which therefore will allow longitudinal lung disease studies to be performed in mouse models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app