Add like
Add dislike
Add to saved papers

Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.

Microbiology 2018 April
Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate the enzymatic function of the Cas9 nuclease. To date, a variety of Cas9 variants and fusion assemblies have been proposed to provide temporally inducible and spatially controlled editing functions. The discovery of a new class of 'anti-CRISPR' proteins, evolved from bacteriophage in response to the prokaryotic nuclease-based immune system, provides a new platform for control over genomic editing. One Cas9-based application of interest to the field of population control is that of the 'gene drive'. Here, we demonstrate use of the AcrIIA2 and AcrIIA4 proteins to inhibit active gene drive systems in budding yeast. Furthermore, an unbiased mutational scan reveals that titration of Cas9 inhibition may be possible by modification of the anti-CRISPR primary sequence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app