Add like
Add dislike
Add to saved papers

Identification of transcripts associated with renal damage due to ureteral obstruction as candidate urinary biomarkers.

Renal obstruction is a common cause of renal failure in adults and children and is suspected when hydronephrosis is detected on imaging. Because not all cases of hydronephrosis are associated with renal damage, biomarkers are needed to guide intervention to relieve obstruction. We performed gene expression profiling on the kidneys from adult mice over a detailed time course after obstruction and compared these data with a neonatal model of bilateral high-grade obstruction induced by conditional deletion of the calcineurin β1 gene. Having identified a set of 143 transcripts modulated in both adult and neonatal obstruction, we tested their expression in a model of short-term obstruction (1 day), where renal damage is transient and reversible, and long-term obstruction (5 days), where significant renal damage is permanent. A significant number of transcripts increased early after obstruction, and later normalized, while 26 transcripts remained elevated 10 and 28 days after relief of 5 days of ureteral obstruction. With the use of qPCR, elevated levels of several of these candidate RNA biomarkers of renal damage were detected in urine from obstructed mice. In addition, several of these candidate RNA biomarkers of damage resulting from obstruction were detectable in catheterized urine samples from children undergoing surgery for ureteropelvic junction obstruction. Measurement of urinary transcripts modulated in response to renal obstruction could serve as biomarkers of renal damage with important clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app