Add like
Add dislike
Add to saved papers

A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries.

Angewandte Chemie 2018 April 17
Potassium-ion batteries (KIBs) are plagued by a lack of materials for reversible accommodation of the large-sized K+ ion. Herein we present, the Bi anode in combination with the dimethoxyethane-(DME) based electrolyte to deliver a remarkable capacity of ca. 400 mAh g-1 and long cycle stability with three distinct two-phase reactions of Bi↔ KBi2 ↔K3 Bi2 ↔K3 Bi. These are ascribed to the gradually developed three-dimensional (3D) porous networks of Bi, which realizes fast kinetics and tolerance of its volume change during potassiation and depotassiation. The porosity is linked to the unprecedented movement of the surface Bi atoms interacting with DME molecules, as suggested by DFT calculations. A full KIB of Bi//DME-based electrolyte//Prussian blue of K0.72 Fe[Fe(CN)6 ] is demonstrated to present large energy density of 108.1 Wh kg-1 with average discharge voltage of 2.8 V and capacity retention of 86.5 % after 350 cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app