Add like
Add dislike
Add to saved papers

Evidence of heat-resistant microorganisms with a special emphasis on filamentous Actinomycetes in hyper-arid soils of Gandom Beryan area, Lut Desert, Iran.

Background and Objectives: In the present study, the Lut Desert, Iran was chosen as one of the hottest places in the world (with the recorded temperature of 70.7°C during 2003-2009) to find out whether any heat-resistant microorganisms were present in the soil.

Materials and Methods: The samples were collected from surface and depth of three identified places of Gandom Beryan in the Lut Desert. Chemical analysis and enumeration of the total bacteria, yeasts and molds were performed. Four selective culture media were employed to isolate the filamentous actinomycetes. The suspected colonies were further confirmed using PCR assay. Then the culture cell-free-supernatants (CFS) of isolates were used to investigate their antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium and Escherichia coli .

Results: Chemical analysis of the samples included moisture (0.2-0.9%), ash (85-91%), organic materials (8.3-14.4%), pH (7.59-9.40) and electrical conductivity (380-2000 μS/cm). The number of isolated bacteria and molds varied from 0-20 to 0-40 CFU/g, respectively. Number of Actinomycetes isolated from the soil samples were between 0-12.2 CFU/g. Nine isolated colonies were identified as filamentous Actinomycetes. To determine the possibility of antimicrobial peptides, the CFS (cell-free supernatant) was firstly neutralized by NaOH and catalase. The results showed that none of the CFS of the isolates was effective against E. coli, S. Typhimurium and S. aureus , while the maximum inhibitory effect was investigated on B. cereus , which was 33.1%±1.19% (mean ± SD).

Conclusion: The results of the current study imply the presence of rare heat-resistant microorganisms in the soil of Gandom Beryan which may be further used to find out more about the function of natural bioactive compounds. Actinomycetes, as extremophile microorganisms, have shown the greatest genomic and metabolic diversity, as such the discovery of the novel Actinomycetes as a source of secondary metabolites is essential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app