Add like
Add dislike
Add to saved papers

Ependymomas overexpress chemoresistance and DNA repair-related proteins.

Oncotarget 2018 January 31
Background: After surgery and radiation, treatment options for ependymoma are few making recurrence a challenging issue. Specifically, the efficacy of chemotherapy at recurrence is limited. We performed molecular profiling on a cohort of ependymoma cases in order to uncover therapeutic targets and to elucidate the molecular mechanisms contributing to treatment resistance.

Results: This ependymoma cohort showed minimal alterations in gene amplifications and mutations but had high expression rates of DNA synthesis and repair enzymes such as RRM1 (47%), ERCC1 (48%), TOPO1 (62%) and class III β-tublin (TUBB3) (57%), which are also all associated with chemoresistance. This cohort also had high expression rates of transporter proteins that mediate multi-drug resistance including BCRP (71%) and MRP1 (43%). Subgroup analyses showed that cranial ependymomas expressed the DNA synthesis enzyme TS significantly more frequently than spinal lesions did (57% versus 15%; p = 0.0328) and that increased TS expression was correlated with increased tumor grade ( p = 0.0009). High-grade lesions were also significantly associated with elevated expression of TOP2A ( p = 0.0092) and TUBB3 ( p = 0.0157).

Materials and Methods: We reviewed the characteristics of 41 ependymomas (21 cranial, 20 spinal; 8 grade I, 11 grade II, 22 grade III) that underwent multiplatform profiling with immunohistochemistry, next-generation sequencing, and in situ hybridization.

Conclusions: Ependymomas are enriched with proteins involved in chemoresistance and in DNA synthesis and repair, which is consistent with the meager clinical effectiveness of conventional systemic therapy in ependymoma. Adjuvant therapies that combine conventional chemotherapy with the inhibition of chemoresistance-related proteins may represent a novel treatment paradigm for this difficult disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app