Add like
Add dislike
Add to saved papers

HSP90 regulates larval settlement of the bryozoan Bugula neritina through the nitric oxide pathway.

The larvae of many sessile marine invertebrates go through a settlement process, during which planktonic larvae attach to a substrate and metamorphose into sessile juveniles. Larval attachment and metamorphosis (herein defined as 'settlement') are complex processes mediated by many signalling pathways. Nitric oxide (NO) signalling is one of the pathways that inhibits larval settlement in marine invertebrates across different phyla. NO is synthesized by NO synthase (NOS), which is a client of the molecular chaperone heat shock protein 90 (HSP90). In the present study, we provide evidence that NO, a gaseous messenger, regulates larval settlement of Bugula neritina By using pharmacological bioassays and western blotting, we demonstrated that NO inhibits larval settlement of B. neritina and that NO signals occur mainly in the sensory organ of swimming larvae. The settlement rate of B. neritina larvae decreased after heat shock treatment. Inhibition of HSP90 induced larval settlement, and attenuated the inhibition of NO donors during larval settlement. In addition, the expression level of both HSP90 and NOS declined upon settlement. These results demonstrate that HSP90 regulates the larval settlement of B. neritina by interacting with the NO pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app