Add like
Add dislike
Add to saved papers

Magnetocardiographic classification and non-invasive electro-anatomical imaging of outflow tract ventricular arrhythmias in recreational sport activity practitioners.

Ventricular arrhythmias (VAs) with left bundle-branch-block and inferior axis morphology (LBBB-IA), suggestive of outflow tract (OT) origin, are a challenge in sports medicine because they can be benign or expression of a silent cardiomyopathy. Non-invasive classification is essential to plan ablation strategy if required. We aimed to evaluating magnetocardiographic (MCG) discrimination of OT-VAs site of origin (SoO). MCG and ECG data of 26 sports activity practitioners, with OT-VAs were analyzed. OT-VAs-SoO was classified with discriminant analysis (DA) of 8 MCG parameters and with invasively-validated ECG algorithms. MCG inverse source-localization merged with magnetic resonance (CMR) provided three-dimensional electro-anatomical imaging (MCG 3D-EAI). ECG classification was univocal in 73%. MCG-DA differentiated right ventricular OT from aortic sinus cusp VAs, with 94.7% accuracy. MCG 3D-EAI confirmed OT-VAs-SoO in CMR images. In cases undergoing ablation, MCG 3D-EAI was confirmed by CARTO 3D-EAI. MCG-DA improves non-invasive classification of OT-VAs-SoO. Further comparison with interventional results is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app