Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Remodeling of the cardiovascular circulation in fetuses of mothers with diabetes: A fetal computational model analysis.

Placenta 2018 March
AIMS: Myocardial structural and functional abnormalities are known to occur in fetuses of mothers with diabetes mellitus (FMDM). The main aim of this investigation was to explore the cardiovascular circulatory patterns in FMDM using a validated lumped computational model of the cardiovascular system.

METHODS: This was a multi-institutional study involving FMDM compared to fetuses of maternal controls (FC). Fetal echocardiographic Doppler data from left and right ventricular outflow tracts, aortic isthmus, middle cerebral and umbilical arteries were fitted into a validated fetal circulation computational model to estimate patient-specific placental and vascular properties. Non-parametric comparisons were made between resistances, compliances and flows in the brain and placenta in FMDM and FC.

RESULTS: Data from 23 FMDM and 31 FC were fitted into the model. In FMDM, compared to FC, placental relative resistance was lower (0.59 ± 0.50 versus 0.91 ± 0.41; p < .05) with higher brain relative resistance (2.36 ± 1.65 versus 1.60 ± 0.85; p < .05). Middle cerebral artery flow was lower in FMDM than FC (0.12 ± 0.14 vs. 0.27 ± 0.21 ml/min; p 0.04) with a lower cerebral-placental flow ratio. Combined stroke volume was lower in FMDM (3.65 ± 2.05 ml) than FC (4.97 ± 2.45 ml) (p 0.04).

CONCLUSIONS: Blood flow is redistributed in FMDM to the placenta, away from the brain. This alteration may play a role in the postnatal health of these fetuses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app