Add like
Add dislike
Add to saved papers

Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets.

AIMS: Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation.

RESULTS: We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently.

INNOVATION: Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells.

CONCLUSION: These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells. Antioxid. Redox Signal. 00, 000-000.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app