JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analyzing the Wave Nature of Hot Electrons with a Molecular Nanoprobe.

Nano Letters 2018 March 15
We report on a novel method, the molecular nanoprobe (MONA) technique, which allows us to measure the nanoscale quasiparticle transport between two arbitrary surface points. In these experiments, hot electrons are injected into the sample surface from the probe tip of a scanning tunneling microscope (STM) and detected by tautomerization switching events of a single deprotonated phthalocyanine (H2 Pc) molecule. By making use of atom-by-atom-engineered interferometers on a Ag(111) surface, we demonstrate that the quantum-mechanical wave nature of hot electrons leads to characteristic oscillations of the molecule tautomerization probability. Two interferometers can be combined to build an energy-dependent selector, which allows it to selectively switch one out of two molecules without changing the position of the STM tip. The MONA technique is compared with conventional d I/d U measurements, where the injection and detection point of hot electrons is intrinsically tied to the same tip location.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app