JOURNAL ARTICLE
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Cerebral Function and Perfusion during Cardiopulmonary Bypass: A Plea for a Multimodal Monitoring Approach.

Heart Surgery Forum 2018 January 32
BACKGROUND: Postoperative neurological injury still represents a major cause of morbidity after cardiac surgery. Our objective was to compare the limits as well as advantages of routine monitoring tools for the detection of cerebral function and perfusion deficits during cardiopulmonary bypass in a daily clinical setting.

METHODS: Adult patients undergoing elective cardiac surgery with use of cardiopulmonary bypass were included. Patients received monitoring comprising Bispectral Index (BIS), Near Infrared Spectroscopy (NIRS) and assessment of middle cerebral artery flow velocity (MCAV) using transcranial Doppler (TCD) sonography. Measurements were taken after anesthesia induction (at baseline) and every 10 minutes during aortic cross-clamping. Relative deviation from baseline values was calculated. Values were compared with predefined, generally accepted threshold values identifying patients at risk for cerebral functional and perfusion deficits.

RESULTS: 30 consecutive patients were included into data analysis. Compared to NIRS as well as BIS monitoring, there was a wide interindividual variability in relative MCAV values for the whole cohort (median 0.9, range 0.39-2.19). Out of 229 measurements in total, 82 BIS but only 30 NIRS and 12 TCD values were lying outside predefined limits. TCD monitoring identified two patients with disturbed cerebral autoregulation, while NIRS remained unremarkable. The latter was significantly associated with systemic hemoglobin levels. Finally, patients with relative MCAV values >1.0 had a higher risk of developing postoperative delirium.

CONCLUSION: Our findings reveal inherent technical limitations of each individual monitoring component, such as high interindividual variability (TCD), low spatial resolution (NIRS), or interaction with anesthetics (BIS). We therefore argue for a multimodal neuromonitoring that combines several qualities. Such approach would help reducing these limitations while individual components complement each other, thus providing more patient safety during cardiac surgery. Furthermore, such an approach would be easily applicable in a routine clinical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app