Add like
Add dislike
Add to saved papers

Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis.

Shock 2018 December
Cardiac progenitor cells (CPCs) being multipotent offer a promising source for cardiac repair due to their ability to proliferate and multiply into cardiac lineage cells. Here, we explored a novel strategy for human CPCs generation from human induced pluripotent stem cells (hiPSCs) using a cardiogenic small molecule, isoxazole (ISX-9) and their ability to grow in the scar tissue for functional improvement in the infarcted myocardium. CPCs were induced from hiPSCs with ISX-9. CPCs were characterized by immunocytochemistry and RT-PCR. The CPC survival and differentiation in the infarcted hearts were determined by in vivo transplantation in immunodeficient mice following left anterior descending artery ligation and their effects were determined on fibrosis and functional improvement. ISX-9 simultaneously induced expression of cardiac transcription factors, NK2 homeobox 5, islet-1, GATA binding protein 4, myocyte enhancer factor-2 in hiPSCs within 3 days of treatment and successfully differentiated into three cardiac lineages in vitro. Messenger RNA and microRNA-sequencing results showed that ISX-9 targeted multiple cardiac differentiation, proliferation signaling pathways and upregulated myogenesis and cardiac hypertrophy related-microRNA. ISX-9 activated multiple pathways including transforming growth factor β induced epithelial-mesenchymal transition signaling, canonical, and non-canonical Wnt signaling at different stages of cardiac differentiation. CPCs transplantation promoted myoangiogenesis, attenuated fibrosis, and led to functional improvement in treated mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app