Add like
Add dislike
Add to saved papers

CO oxidative coupling to dimethyl oxalate over Pd-Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study.

CO oxidative coupling to dimethyl oxalate (DMO) on Pd(111), Pd-Cu(111) and Pd-Al(111) surfaces was systematically investigated by means of density functional theory (DFT) together with periodic slab models and micro-kinetic modeling. The binding energy results show that Cu and Al can be fine substrates to stably support Pd. The favorable pathway for DMO synthesis on these catalysts starts from the formation of two COOCH3 intermediates, followed by the coupling to each other, and the catalytic activity follows the trend of Pd-Al(111) > Pd(111) > Pd-Cu(111). Additionally, the formation of DMO is far favorable than that of dimethyl carbonate (DMC) on these catalysts. The results were further demonstrated by micro-kinetic modeling. Therefore, Pd-Al bimetallic catalysts can be applied in practice to effectively enhance the catalytic performance and greatly reduce the cost. This study can help with fine-tuning and designing of high-efficient and low-cost Pd-based bimetallic catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app