Add like
Add dislike
Add to saved papers

Spontaneous adipogenic differentiation potential of adipose‑derived stem cells decreased with increasing cell passages.

Primary adipose-derived stem cells (ADSCs) are a mixture of cell types including preadipocytes having the ability to spontaneously differentiate into adipocytes. The aim of the present study was to compare the spontaneous adipogenic differentiation potential of ADSCs at different passages to determine whether it decreased with continuous cell passages. Mouse ADSCs (mADSCs) were harvested and cells from passages 1 to 5 were used for experiments. The proliferation of mADSCs at different passages was tested using the cell counting kit‑8 assay. Reverse transcription‑quantitative polymerase chain reaction was used to determine relative mRNA expression levels of CCAAT/enhancer binding protein α (Cebpa and C/EBPα) and peroxisome proliferator‑activated receptor γ (Pparg and PPARγ), and western blot analysis was used to investigate C/EBPα and PPARγ protein expression. The cells were cultured using DMEM. The fixed cells were then stained using Oil Red O on days 14 and 28, and the obtained extracted dye was monitored for absorbance. The 510 nm absorbance from passages 1 to 5 was observed to be statistically different. The relative expression levels of Cebpa and Pparg for mADSCs from passage 1 were significantly higher when compared with those for mADSCs from passages 2 to 5 on days 3, 5 and 7. However, no difference was identified in the expression levels of proteins C/EBPα and PPARγ for different passages. Although the mRNA expression levels of Pparg from passages 4 to 5 were significantly higher when compared with those from passage 1, the results of Oil Red O absorbance, mRNA expression levels of Cebpa, and the protein expression levels of C/EBPα and PPARγ exhibited no difference between mADSCs from passages 1 to 5 when cultured with induced adipogenic differentiation medium. Therefore, it was concluded that the spontaneous adipogenic differentiation potential of ADSCs decreased with continuous cell passages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app