Add like
Add dislike
Add to saved papers

Strength of tremor patches along deep transition zone of a megathrust.

Scientific Reports 2018 Februrary 27
Deep low frequency tremors are indicators of slow slip transients in the brittle-ductile transition zone along subducting plates. Investigation of comprehensive tremor activities is therefore an important issue for understanding the seismic/aseismic characteristics in transition zones. Here, we focus on the radiated energy from tremors to reveal the along-strike heterogeneity in the strength of tremor patches. Based on a tremor catalog that more accurately evaluates radiated energy, we examine the spatio-temporal activity of tremors accompanied by slow slip events (SSEs) in western Shikoku, southwestern Japan. The new finding of this study is that the energy radiated from tremors is positively correlated with the speed of tremor migration front and the slip rate along the plate interface during a SSE. This can be qualitatively explained by a stress diffusion model, which consists of along-strike heterogeneities in the effective strength of tremor patches embedded in a ductile shear zone. This effective strength heterogeneity is supported by a lateral variation in the stress drop of a SSE; it is consistent with the fluid pressure distribution along the plate boundary fault and the tidal sensitivity of tremors. Accurate evaluation of tremor activities, especially the radiated energy, can be used to infer the spatial distribution of the strength of tremor patches in transition zones worldwide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app