Add like
Add dislike
Add to saved papers

Treatment of Donor Rat Hearts Prior to Transplantation with FLIP (FADD-Like Interleukin Beta-Converting Enzyme (FLICE)-Like Inhibitory Protein) in Cardioplegic Solution Decreased Apoptosis at Thirty Minutes Post-transplantation and Decreased Total Tyrosine Phosphorylation Levels.

BACKGROUND Heart transplantation is a therapeutic option for patients with severe coronary artery disease or heart failure. One of the difficulties to overcome is the apoptosis of cardiomyocytes in the donor organ. To prevent apoptosis in the donor organ, we developed a fusion protein containing FLIP (FADD-like interleukin beta-converting enzyme (FLICE)-like inhibitory protein) to inhibit caspase-8. MATERIAL AND METHODS We linked the cDNA coding for the FLIP protein to the transduction domain of HIV (human immunodeficiency virus) to allow the protein to enter cells. The recombinant protein was used at two different concentrations, 3 nM and 30 nM, for treatment of the donor heart in rat transplantation experiments. After transplantation, apoptosis was measured by ELISA, and the levels of active caspase-3, caspase-8, Bid, and PUMA were determined by western blotting using specific antibodies. RESULTS We observed that treatment of the donor organ with a solution containing this protein reduced the apoptosis level in the donor organ after 30 minutes post-transplantation as measured by the total of apoptotic cells with ELISA assay, and caspase-8 and caspase-3 activation and decreased levels of BH3-only proteins such as Bid and PUMA. Furthermore, this treatment also reduced the total tyrosine phosphorylation levels, which may be a possible measurement of lower oxidative stress levels in cardiomyocytes. CONCLUSIONS Protein FLIP solution reduced apoptosis at 30 minutes post-transplantation and decreased levels of several regulators of apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app