Add like
Add dislike
Add to saved papers

On the origin of epileptic High Frequency Oscillations observed on clinical electrodes.

OBJECTIVE: In this study we aim to identify the key (patho)physiological mechanisms and biophysical factors which impact the observability and spectral features of High Frequency Oscillations (HFOs).

METHODS: In order to accurately replicate HFOs we developed virtual-brain/virtual-electrode simulation environment combining novel neurophysiological models of neuronal populations with biophysical models for the source/sensor relationship. Both (patho)physiological mechanisms (synaptic transmission, depolarizing GABAA effect, hyperexcitability) and physical factors (geometry of extended cortical sources, size and position of electrodes) were taken into account. Simulated HFOs were compared to real HFOs extracted from intracerebral recordings of 2 patients.

RESULTS: Our results revealed that HFO pathological activity is being generated by feed-forward activation of cortical interneurons that produce fast depolarizing GABAergic post-synaptic potentials (PSPs) onto pyramidal cells. Out of phase patterns of depolarizing GABAergic PSPs explained the shape, entropy and spatiotemporal features of real human HFOs.

CONCLUSIONS: The terminology "high-frequency oscillation" (HFO) might be misleading as the fast ripple component (200-600 Hz) is more likely a "high-frequency activity" (HFA), the origin of which is independent from any oscillatory process.

SIGNIFICANCE: New insights regarding the origins and observability of HFOs along depth-EEG electrodes were gained in terms of spatial extent and 3D geometry of neuronal sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app