Add like
Add dislike
Add to saved papers

Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction.

Biomaterials 2018 May
The inherent hydrophobicity and large surface area of electrospun synthetic polymeric scaffolds often cause non-specific protein adsorption, thereby influencing macrophage functions and eventually leading to fibrosis at the tissue-scaffold interface. This work reports fabrication of silk fibroin (SF)-functionalized electrospun polycaprolactone (PCL) fibers by single-component layer-by-layer assembly and decorate the SF with heparin disaccharide (HD), resulting in the non-covalent binding of interleukin-4 (IL-4) with the capacity to modulate macrophage polarization. A modified SF derivative was obtained by diazonium coupling and then covalently bonded with HD via click chemistry to eventually bind IL-4 efficiently and maintain its bioactivity. In vitro studies showed that IL-4 surface-functionalized nanofibrous scaffolds promoted polarization to M2 macrophages in the short-term. Importantly, in a murine subcutaneous implantation model, we found that promoting transient shifts in macrophage polarization at early stage can significantly inhibit the extent of the late foreign body reactions. Furthermore, the results of a transcriptomic profiling showed that MARK, PI3K, JNK and NF-κB signaling pathways played an important role in regulating the macrophage phenotypes in the SF/HD/IL-4-functionalized fibers. Our results suggest that such a strategy offers a new approach for utilizing biological agent surface functionalization to modulate the foreign body reaction to nanofibrous scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app