Add like
Add dislike
Add to saved papers

Kinetics Study of Heterogeneous Bromine Release from the Reaction between Gaseous Ozone and Aqueous Bromide Solution.

The heterogeneous release of molecular bromine, Br2 , from the reaction between gaseous ozone and aqueous bromide ion in seawater ice and sea salt aerosols is considered to be an initial source of reactive bromine species in the troposphere. Recent studies have demonstrated that the uptake of ozone by aqueous bromide solution is promoted by reactions at the gas-liquid interface. The present work investigated the heterogeneous reaction between gaseous ozone and aqueous bromide solution at atmospheric pressure and room temperature using a wetted wall flow reactor combined with a chemical ionization mass spectrometer. The emission rate of Br2 was measured as a function of gaseous ozone concentration, aqueous bromide concentration, and pH. In addition, we conducted a simple kinetics model simulation that included only bulk aqueous-phase reactions and compared the theoretical values with the experimentally determined values. The Br2 emission rates measured experimentally differ from the simulated rates at relatively high bromide concentration, as well as in the pH region of 6-9. These differences might be explained by different Br- concentration and/or deprotonation efficiency near the interface region and those in the bulk solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app