Add like
Add dislike
Add to saved papers

Stringent Constraints on Fundamental Constant Evolution Using Conjugate 18 cm Satellite OH Lines.

Physical Review Letters 2018 Februrary 10
We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targeting the redshifted conjugate satellite OH 18 cm lines at z≈0.247 towards PKS 1413+135. The satellite OH 1720 and 1612 MHz lines are, respectively, in emission and absorption, with exactly the same line shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612 MHz line rest frequencies have different dependences on the fine structure constant α and the proton-electron mass ratio μ, a comparison between their measured redshifts allows one to probe changes in α and μ with cosmological time. In the case of conjugate satellite OH 18 cm lines, the predicted perfect cancellation of the sum of the line optical depths provides a strong test for the presence of systematic effects that might limit their use in probing fundamental constant evolution. A nonparametric analysis of our new Arecibo data yields [ΔX/X]=(+0.97±1.52)×10^{-6}, where X≡μα^{2}. Combining this with our earlier results from the Arecibo Telescope and the Westerbork Synthesis Radio Telescope, we obtain [ΔX/X]=(-1.0±1.3)×10^{-6}, consistent with no changes in the quantity μα^{2} over the last 2.9 Gyr. This is the most stringent present constraint on fractional changes in μα^{2} from astronomical spectroscopy, and with no evidence for systematic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app