Add like
Add dislike
Add to saved papers

Redox Recycling Amplification Using an Interdigitated Microelectrode Array for Ionic Liquid-Based Oxygen Sensors.

Analytical Chemistry 2018 March 21
A new design for a membrane-free gas sensor modified with a thin layer of ionic liquid is described. The new approach uses miniaturized interdigitated microelectrodes for detecting gases having reversible electrochemistry, for example, dioxygen. Analyte molecules are reduced on the first working electrode, creating an intermediate species (e.g., superoxide, O2 •- , from dioxygen) that can be reoxidized back to the original molecule at the second working electrode. The loop of redox reactions enhances the measured current, leading to high sensitivity (3.29 ± 0.06 nA cm-2 ppm-1 ) and low detection limit (LOD = 174 ppm). The gas sensor design was demonstrated to monitor typical concentrations of oxygen with good accuracy and precision. The enhancement in the current is characteristic only of gas molecules with reversible electrochemistry, which indicates that the proposed gas sensor can analyze these molecules with greater sensitivity over those with irreversible electrochemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app