Add like
Add dislike
Add to saved papers

Distinctive Stress-Stiffening Responses of Regenerated Silk Fibroin Protein Polymers under Nanoscale Gap Geometries: Effect of Shear on Silk Fibroin-Based Materials.

Biomacromolecules 2018 April 10
Interfacial dynamics, assembly processes, and changes in nanostructures and mechanical properties of Bombyx mori silk fibroin (SF) proteins under varying degrees of nanoconfinement without and with lateral shear are investigated. When only compressive confinement forces were applied, SF proteins adsorbed on the surfaces experienced conformational changes following the Alexander-de Gennes theory of polymer brushes. By contrast, when SF proteins were exposed to a simultaneous nanoconfinement and shear, remarkable changes in interaction forces were observed, displaying the second order phase transitions, which are attributed to the formation of SF micelles and globular superstructural aggregates via hierarchical assembly processes. The resultant nanostructured SF aggregates show several folds greater elastic moduli than those of SF films prepared by drop-casting and compression-only and even degummed SF fibers. Such a striking improvement in mechanical strength is ascribed to a directional organization of β-sheet nanocrystals, effectively driven by nanoconfinement and shear stress-induced stiffing and ordering mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app