Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Streptonigrin Inhibits SENP1 and Reduces the Protein Level of Hypoxia-Inducible Factor 1α (HIF1α) in Cells.

Biochemistry 2018 March 21
Streptonigrin (CAS no. 3930-19-6) is a natural product shown to have antitumor activities in clinical trials conducted in the 1960s-1970s. However, its use in clinical studies eventually faded, and the molecular mechanisms of streptonigrin antitumor effects remain poorly defined. Despite its lack of current clinical use, efforts on its total synthesis have continued. Here, we show that streptonigrin binds and inhibits the SUMO-specific protease SENP1. NMR studies identified that streptonigrin binds to SENP1 on the surface where SUMO binds and disrupts SENP1-SUMO1 interaction. Site-directed mutations in combination with NMR chemical shift perturbation suggest key roles of aromatic π stacking interactions in binding streptonigrin. Treatment of cells with streptonigrin resulted in increased global SUMOylation levels and reduced level of hypoxia inducible factor alpha (HIF1α). These findings inform both the design of SENP1 targeting strategy and the modification of streptonigrin to improve its efficacy for possible future clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app