Add like
Add dislike
Add to saved papers

Characterization of Mega-Dalton-Sized Nanoparticles by Superconducting Tunnel Junction Cryodetection Mass Spectrometry.

ACS Nano 2018 March 28
The characterization of nanomaterials is critical to understand the size/structure-dependent properties of these particles. In this report, a form of heavy ion mass spectrometry, namely, superconducting tunnel junction (STJ) cryodetection mass spectrometry (MS) is used to characterize quantum dot semiconductor nanocrystals and gold nanoparticles. The nanoparticles studied ranged in mass from 200 kDa to >1.5 MDa and included lead sulfide quantum dots, various cadmium selenide and/or telluride-based core-shell quantum dots coated with different ligands, and gold nanoparticles. Nanoparticles were ionized by both matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI), shot with an aimed ion gun into a flight tube, mass separated by time-of-flight (TOF), and detected by an energy-sensitive STJ cryodetector. STJ cryodetection MS can be used to analyze intact heterogeneous nanoparticles, allowing determination of average particle mass, dispersity, and ligand loading. Some nanoparticles, however, do undergo fragmentation during the MALDI or LDI-TOF mass analyses. The measurement of the energy deposited into the detector was found to be different for different types of particles. Metastable fragments from these nanoparticles were observed at lower energies. The lower energies deposited for metastable fragments can provide insight into the stability and surface compositions of these materials. Cadmium selenide core-shell quantum dots (655 nm emission) conjugated to biomacromolecules, such as cholera toxin B and human serum transferrin, were also analyzed. When compared to unconjugated particles by mass, it was determined that ∼96 cholera toxin B and ∼14 transferrin proteins were attached to the surface of these nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app