Add like
Add dislike
Add to saved papers

Wheel-like Ln 18 Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO 2 .

Inorganic Chemistry 2018 March 20
Two isostructural 2D MOFs ([Ln7 (CDA)6 (HCOO)3 (μ3 -OH)6 (H2 O)8 ] n , abbreviated as 1-Gd and 2-Dy) were successfully synthesized under solvothermal conditions. The self-assembly of lanthanide(III) nitrate and 1,1'-cyclopropane-dicarboxylic acid (H2 CDA) resulted in wheel-like Ln18 cluster second building units (SBU), which are further linked to six neighboring wheels to generate a 2D ordered honeycomb array. Both 1-Gd and 2-Dy exhibit high thermal stability and decompose above 330 °C. Moreover, they have good solvent stability in ten common solvents and pH stability with pH values from 1 to 13. Magnetic studies reveal that 1-Gd exhibits weak antiferromagnetic coupling between adjacent Gd3+ ions and has a large magnetocaloric effect of 47.30 J kg-1 K-1 (Δ H = 7.0 T at 2 K), while 2-Dy shows ferromagnetic interaction between adjacent Dy3+ ions. Interestingly, 1-Gd and 2-Dy can catalyze the cycloaddition of CO2 to epoxides under mild conditions and can be reused at least five rounds with negligible loss of catalytic performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app